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Implicit Finite-Difference Simulations of Three-Dimensional
Compressible Flow

Thomas H. Pulliam* and Joseph L. Steger*
NASA Ames Research Center, Moffett Field, Calif.

An implicit finite-difference procedure for unsteady three-dimensional flow capable of handling arbitrary
geometry through the use of general coordinate transformations is described. Viscous effects are optionally
incorporated with a "thin-layer" approximation of the Navier-Stokes equations. An implicit approximate
factorization technique is employed so that the small grid sizes required for spatial accuracy and viscous
resolution do not impose stringent stability limitations. Results obtained from the program include transonic
inviscid or viscous solutions about simple body configurations. Comparisons with existing theories and ex-
periments are made. Numerical accuracy and the effect of three-dimensional coordinate singularities are also
discussed.

I. Introduction

A COMBINATION of general curvilinear coordinate
transformations, well-ordered grids, and an implicit

algorithm is used here to construct a versatile three-
dimensional program for unsteady or steady inviscid and
viscous compressible flow. While we generally look to the
future for computers with more speed and storage, the
computers of today can calculate meaningful numerical
solutions about relatively simple three-dimensional body
shapes. The need to progress to three dimensions on current
computers is twofold: I) to demonstrate to the user com-
munity that complex geometries and body motions will not
present any great difficulty to routine solution given com-
puters one or two orders of magnitude more powerful than
what is available today, and 2) to provide simple, three-
dimensional flowfield solutions to test current and future
turbulence models.

The three-dimensional program described herein
demonstrates one technique that can be applied to solve
flowfields about simple (present application) and complicated
(future applications) aerodynamic shapes. General trans-
formations1'4 valid for any body configuration or grid system
are used. An implicit approximate factorization method5"8 is
chosen chiefly for its unconditional linear stability property,
as well as for its compatibility with the vectorized computer
processors9 that seem to be the trend of the future. The
overall algorithm constructed here is both simple and flexible;
its extension to other problems and computers should be
reasonably straightforward.

In Sec. II the equations, generalized transformations, and
boundary conditions are presented, along with a "thin-layer"
viscous approximation. The numerical algorithm is described
in Sec. Ill, while the geometry and grid systems are discussed
in Sec. IV. Results and their discussion appear in Sec. V.
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II. Transformed Equations
To enhance numerical accuracy and efficiency, coordinate

mappings of the governing equations are employed which
bring all body surfaces onto coordinate surfaces, and cluster
grid points in flowfield regions where the dependent variables
are expected to undergo rapid changes of gradient. In the
transformed plane, uniform discretization formulas and well-
ordered interior grid point solution algorithms can be used.
The equations can also be written in strong conservation law
form for shock-capturing purposes and to avoid possible
weak instability from source terms. These considerations led
to the general transformed equations with the additional
simplifications that are discussed in this section. Related work
using comparable transforms in flowfield applications can be
found in Refs. 10-15.

A. Equations in Nondimensional Form
If inertial Cartesian velocity components are retained as

dependent variables, the three-dimensional, unsteady Navier-
Stokes equations can be transformed to the arbitrary cur-
vilinear space £,r/,f,T shown in Fig. la, while retaining strong
conservation law form (see Refs. 1-4). The resulting trans-
formed equations are not much more complicated than the
original Cartesian set, and can be written in nondimensional
form as

(i)
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Fig. 1 Transformations and body coordinate.
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Here it is understood that the Cartesian derivatives are to be
expanded in £,i?,f space via chain-rule relations such as

and

V—TI(

(3)

where U, K, and W are contravariant velocities written
without metric normalization (see, for instance, Ref. 16).
(Note that other suggestive forms of the equations can be
written; for example,

where (U — XT), etc. are relative Cartesian velocity com-
ponents.)

The viscous flux terms are given by

0

rtxTxx+rlyTxy+rlz'rxz

(4)

GV=J

The Cartesian velocity components u, v, w are non-
dimensionalized with respect to a^ (the freestream speed of
sound), density p is referenced to p^; and total energy e to
p^a2^ . Pressure is defined as

p= (y-l)[e-0.5p(u2 + v2 + w 2 ) ] (6)

and throughout 7 is the ratio of specific heats. Also, K is the
coefficient of thermal conductivity, /* is the dynamic viscosity,
while X from the Stokes' hypothesis is - 2/V. The Reynolds
number is Re and the Prandtl number is Pr.

Finally, the metric terms are obtained from chain-rule
expansion of x^, y^ etc., and solved for £v , £ v , etc., to give

=-XTrlx-yTrly-ZTriz

(7)

and

B. Thin-Layer Approximation
In high Reynolds number flows, one usually has only

enough grid points to resolve viscous terms in a thin layer near
rigid boundaries. Typically, grid lines are clustered near a
body and resolution along the body is similar to what is
needed in inviscid flow. Even though the full Navier-Stokes
equations may be programmed, viscous derivatives along the
body are not resolved in general unless the streamwise and
circumferential grid spacings are sufficiently small, in many
cases of 0(Re 'l/2) based on the effective viscosity coefficient.
Consequently, a thin-layer approximation is used; all viscous
derivatives in the £ and r? direction (along the body) are
neglected, while terms in fare retained and the body surface is
mapped onto f = const (see Figs. Ib and 2). Equation (1) thus
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simplifies to

where

IMPLICIT THREE-DIMENSIONAL COMPRESSIBLE FLOW

(8)

(9)

In the thin-layer model, a boundary-layer-like coordinate is
adopted and the viscous terms that are dropped in boundary-
layer theory are eliminated. It should be stressed that the thin-
layer approximation is valid only for high Reynolds number
flows and that very large turbulent viscosity coefficients could
conceivably invalidate the model.

As noted earlier, the thin-layer model requires a boundary-
layer-type coordinate system. To use this model near the
intersection of a vertical and horizontal wall, for example,
would require treating both walls as a single continuous
surface which is mapped into the same f= const plane. If
these conditions are violated, the neglected viscous terms
should and can be added to the present numerical procedure
(Refs.6, 8,22, and 23).

The concept of a thin-layer viscous model has been em-
ployed by others, notably, Cheng,17 Rubin and Lin,18 Lubard
and Helliwell,19 McDonald and Briley,20 and Davis,21 within
the framework of the parabolized Navier-Stokes equations or
the thin shock-layer approximations. Because these are
sometimes space-marching procedures, we avoid this ter-
minology here; that is, "parabolized Navier-Stokes." In
space-marching methods, additional restrictions must be
placed on the streamwise (i.e., £) convection terms and their
boundary conditions, whereas, such restrictions are not made
here. Consequently, unlike the space-marching procedures,
the present treatment of the unsteady equations, Eq. (8), is
valid for streamwise as well as crossflow separation and does
not require additional approximation in subsonic flow
regions.

C. Surface Boundary Conditions
The tangency condition along the surface $(x,y,z,t) = const

for inviscid flow is that W= 0 and is used in

161

(11)
where n is the normal direction to the body surface. For
viscous flows, the same relation is used with U— K=0. All of
the preceding boundary conditions are valid for steady or
unsteady body motion.

III. Numerical Method
The finite-difference scheme is the implicit approximate

factorization algorithm used in the delta form described by
Beam and Warming.7'8 An implicit method was chosen to
avoid restrictive stability conditions which occur when small
grid spacing is used. Highly refined grids are needed to obtain
spatial accuracy and resolution of large gradients such as
occur in calculating viscous effects. Small grid sizes may also
occur because nonoptimal mappings overly concentrate
points in a given region. Implicit methods are useful in
avoiding stiffness in problems in which the solution is forced.
In such cases, time steps that are large compared to those
demanded by an explicit stability limit can often be taken
without degradation of accuracy.

The basic algorithm is first- or second-order accurate in
time and is noniterative. The equations are factored (spatially
split), which reduces the solution process to three one-
dimensional problems at a given time level. Central-difference
operators are employed and the algorithm produces block
tridiagonal systems for each space coordinate. The stability
and accuracy of the numerical algorithm are described in
detail by Warming and Beam.22 Linear analysis of the
numerical scheme shows that it is unconditionally stable,
although in actual practice, the nonlinear equations are
subject to a time-step limitation. The limitation, though, is
usually much less stringent than what is found for con-
ventional explicit schemes. The numerical scheme can be first-
or second-order accurate in time (for the steady-state cases
presented here, first-order accuracy is employed), with
second- or fourth-order accuracy in space.

A. Approximate Factorizations and Linearizations
The finite-difference algorithm applied to Eq. (8) results in

the following approximate factorization

-qn}

(12)

V-r,, (10)

to obtain u,v, and w. For viscous flow, U= V=Q are enforced
in Eq. (10) as well.

A relation for pressure along the body surface is obtained
from a normal momentum relation (found by combining the
three transformed momentum equations)

where the <5's are central-difference operators, and A and V
are forward and backward-difference operators, e.g.,
A f# = <7(£ , r / , f+Af) -<7(£,Tj , f ) . Indices denoting spatial
location are suppressed for convenience and h — ̂ t
corresponds to Euler implicit first-order and h = At/2 to
trapezoidal second-order time accuracy.

The Jacobian matrices A\ Bn, and Cn are obtained in
the time linearization of En, Fn, and G" and can be written as
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A,B, or C =

K 0
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(13)

where

and, for example, to obtain A,

= o.5 (y -1) (u2 + v2 + w2)

The viscous vector Sn + 1 is linearized by Taylor series as in Ref. 13, producing the coefficient matrix

0
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B. Explicit and Implicit Numerical Dissipation
Fourth-order dissipation terms such as eEJ~! (V^A^ )2Jq

in Eq. (12) are added explicitly to the equations to damp high-
frequency growth and thus serve to control nonlinear in-
stability. Linear stability analysis shows that the coefficient e£
must be less than 1/24. The addition of the implicit second-
difference terms operating on (qn + 1-qn) with coefficient
e7 extends the linear stability bound of the fourth-order terms.
Although linear stability theory based on periodic boundary
conditions shows that the stability-bound eE is again limited,
unpublished analysis by Jean-Antoine Desideri of Iowa State

University suggests that unconditional stability can be ob-
tained for fixed boundary conditions if e7 is sufficiently large,
and numerical experiments confirm this. The present
procedure is to set eE = At and e/ = 2e£, which results in a
consistent definition of e£; as the time step is increased, the
amount of artificial dissipation added relative to the spatial
derivatives of convection and diffusion remains constant. The
implicit smoothing term adds an error Q(AtAx2qxx().

C. Second- and Fourth-Order Accuracy of Convection Terms
Generally, we have used second-order, central-difference

operators for convection and diffusion derivatives. In three
dimensions we are forced into somewhat coarse grids due to
limitations of computer storage. For improved accuracy, it is
desirable to use fourth-order accurate convective dif-
ferencing, especially in high Reynolds number viscous flow in
which it can be difficult to keep the convection truncation
error from exceeding the magnitude of the viscous terms
themselves. One possibility is to use fourth-order Fade dif-
ferencing for convection terms and second-order Fade dif-
ferencing for diffusion terms.23 If the time variation of the
solution is small, however, the same effect is obtained by
remaining first-order accurate in time and by using five-point,
fourth-order accurate central differencing for the right-hand-
side convection terms in Eq. (12). Because fourth-order
differences are applied only as an explicit operation, little
additional work is necessary. One can show that for Euler
implicit time differencing, the altered algorithm remains
unconditionally stable; it is, however, unconditionally un-
stable for trapezoidal differencing.

D. Differencing the Metrics to Maintain the Freestream
The metric terms £x, rjx, etc., are formed from x,y,z data

using second-order, central-difference approximations of x%,
*n, etc. in Eq. (7). In three dimensions, a freestream error can
be introduced, unless, for example, this differencing is done
with special weighted averages (see Ref. 24). However,
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calculations have been made on smoothly varying grids
without attempting to maintain freestream; compared with
results in which freestream is maintained using the averaging
procedure, there was no discernible difference in the solution
on the body.

Perfect maintenance of the freestream can also be achieved
by simply subtracting the freestream fluxes from the
governing equations; that is,

(16)

where the error in the viscous term is neglected since it will be
small for high Reynolds number flow. This procedure is
adopted for all subsequent calculations.

E. Implementing Boundary Conditions
Unknown values of q on the boundaries are updated ex-

plicitly. Thus, A<7 is set to zero at the boundaries leading to
a first-order error in time. One intuitively expects implicit
boundary conditions to be more stable than explicit ones.
With our treatment of boundary conditions, however, this has
not been our experience, at least for the various implicit
boundary schemes that have been successfully implemented so
far in two dimensions. In any event, explicit treatment of the
boundaries leads to a far more simple and flexible scheme,
where boundary conditions become a modular element that
can be put in or pulled out of a computer program without
disturbing the implicit algorithm.

For inviscid flows, values of p, U, and V along the body
surface are found by linear extrapolation from above, while in
viscous cases p is extrapolated and U= K=0. In either case,
W= 0 and values of u, v, and w are obtained from Eq. (10).

Surface pressure is obtained by integrating Eq. (11). In Eq.
(11) the right-hand side is known from the previous ex-
trapolation process, and the basic approximate factorization
algorithm is applied along the body using backward dif-
ferencing in f and central differences in £ and r/. Scalar
tridiagonals are thus inverted in the £ and ry directions. At the
far field boundaries, freestream values are specified except on
the downstream boundary. There, a simple first-order ex-
trapolation is used for M^>\, while extrapolation and the
condition that pressure is fixed at/?^ is used for Mx < 1 .

We remark that a more pleasing boundary treatment would
result if the governing equation, Eq. (8), could be differenced
directly on the boundary surface using inward, one-sided,
spatial-difference operators. However, the use of one-sided
spatial differencing is usually a destabilizing process for
diffusion terms, as well as for convection terms whose
Jacobian matrices have real eigenvalues of the wrong sign.
Consequently, in the present boundary condition treatment,
the simple time-independent-like relations of tangency, ex-
trapolation, and, for pressure, Eq. (11), were imposed and
applied as described earlier.

IV. Grid Systems
The flow equations have been written in a generalized

curvilinear coordinate system that can handle arbitrary
surface geometry, including steady and unsteady body
motions. The only restriction is due to the thin-layer ap-
proximation where it is required that the thin-layer coordinate
be f, where f equals a constant taken as the body surface.
Simple body motions such as plunge, rotation, and trans-
lation can be handled with linear transformations. More
complicated motions and distortions of the grid and body can
be introduced as necessary. In our current three-dimensional
applications, only steady problems have been solved in which
the body and grid system remain stationary.

Because of limited storage capacity on current computers,
only simple bodies and geometries have been used. Figure 2
shows the two-grid systems that are used — a warped cyiin-
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Fig. 2 Coordinate systems: a) warped cylindrical coordinate; b)
warped spherical coordinate.

drical and a warped spherical coordinate. In each case, the
grid unfolds into a rectangular computational domain with
the body projected onto the lower face. Note that both
systems have a coordinate singularity (S in Fig. 2) which is
unavoidable in mapping a closed three-dimensional body
surface. The singular line is equivalent to either the r = 0 line
of a cylinder or the polar singularity of a sphere; and, while its
location is arbitrary, it is placed here at the nose of the bodies.

The warped cylindrical coordinate (Fig. 2a) has the
disadvantage that, as grid lines are clustered near the body for
accuracy and viscous resolution, grid points also cluster
toward the singular axis. Points are thus wasted in upstream
regions where changes in the flow gradients are small;
whereas in the warped spherical system (Fig. 2b), grid lines
clustered to the body do not accumulate toward the singular
pole. Furthermore, radial grid lines diverge away from the
singularity, providing a more efficient distribution of points
in the far field.

While a limiting form of the equations would be needed at
the singular line, the choice of cylindrical coordinates in
inviscid flow or spherical coordinates in inviscid or thin-layer
flow allows us to avoid the singularity altogether in the finite-
difference formulation. This is because, in either case, E and
G are identically zero on the singular line, even for a time-
deforming grid. (Note that £ X / J = (y^z^-y^) and that r/
derivatives of x,y,z are zero because x,y,z do not change as we
rotate around the axis. Likewise ,£ y /J , £ Z / J , ZX/J, etc., are
zero; consequently, from Eq. (2), E and G are zero.)

Results will be shown for both coordinate systems. Simple
shear grids are used about either ogive cylinders or blunted
bodies. Exponential clustering is used in the radial-like
direction to keep grid points reasonably clustered near the
body. For more complex shapes automatic grid generation
procedures (see, e.g., Refs. 25-28) can be used which will also
produce smoothly varying grids.

V. Results
Solutions have been obtained about isolated body con-

figurations, either ogive sting or a hemisphere cylinder, at
various Mach numbers and angles of attack. A typical inviscid
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Fig. 6 Hemisphere cylinder at Mx =1.2 and a = 19 deg.

cylindrical grid consists of 48 points along the body axis—20
points radially, and 12 points in the circumferential direction.
A restriction of bilateral symmetry is imposed solely to reduce
the computational domain and is not a limitation of the
algorithm. The spherical grid usually consists of 30 points
along the axis, 30 points in the radial direction, and 12-18
circumferential points with bilateral symmetry imposed. All
viscous results were obtained on the hemisphere cylinder at
moderate angles of attack so that crossflow asymmetries do

not invalidate the bilateral symmetry assumption. For the
viscous grids, exponential stretching are used to cluster points
near the body.

For freestream Mach numbers close to one, an inviscid
steady-state solution is typically obtained in approximately 1
h of CPU time on a Control Data Corporation 7600, while 2-3
h of CPU time are needed for viscous cases. Note that while
implicit methods usually imply that large time steps can be
taken, it does not automatically follow that fast convergence
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to a steady state is achieved. Techniques to improve the
algorithm as a viable relaxation procedure are currently being
investigated.

A. Inviscid Flow about Ogive Cylinder
Inviscid flow results for an elliptical cross-sectional body at

MOO = 1.2 and a. = 4 deg are shown in Fig. 3 and are compared
with experimental data of McDevitt and Taylor.29 The
numerical and experimental results agree quite well, except
for numerical oscillations at the nose that result from the
shock-capturing process. Additional inviscid flow results over
pointed nose elliptical and circular cross-sectional bodies are
given in Ref. 24, which show similar good agreement with
experiment.

B. Hemisphere-Cylinder Results

Verification of Accuracy in Inviscid Flow
Switching now to the hemisphere-cylinder cases, a zero

angle of attack inviscid solution at Mx =0.95 is presented in
Fig. 4. Comparisons are made with the experimental results of
Hsieh30 and a numerical calculation by Chaussee using his
two-dimensional inviscid axisymmetric code.31 Both
numerical solutions use second-order accurate differencing
and are in excellent agreement. Agreement with the ex-
periment is also quite good.

A comparison between solutions using second- and fourth-
order spatial differences for the convection terms is shown in
Fig. 5 for the leeward side of the hemisphere cylinder at
MOO = 1.4 and ct= 10 deg. The numerical solutions are also
compared with the experimental results of Hsieh.32 The
second-order coarse grid results are inaccurate. Although
refining the grid improves the results, they are still somewhat
unsatisfactory; better results are obtained when fourth-order
differences are used on the coarse grid, and excellent
agreement is achieved for fourth-order differences on the fine
grid.

The results in Fig. 5 represent extremes of the calculations.
It has been our experience that adequate resolution can be
obtained for simple body shapes and small angles of attack by
means of second-order differencing. However, for more
complicated bodies, fourth-order differencing will probably
be needed to obtain good accuracy. The addition of fourth-
order accuracy (as previously described for steady-state
problems) does not substantially increase the computation
time.

= Q° LEEWARD
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X = 7.8 NOSE RADII
SP : PRIMARY SEPARATION
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= 180° WINDWARD

Fig. 7 Velocity vectors in crossflow plane, M^ = 1.2, a = 19 deg.

Viscous Separated Flow at High Incidence and M^ > 1
A laminar viscous-flow calculation is presented in Fig. 6 for

a hemisphere cylinder at M^ = 1.2 and a =19 deg. Ex-
perimental pressure profiles from Hsieh32 are compared with
the numerical calculations obtained using fourth-order ac-
curate differencing. On the leeward side, streamwise
separation occurs at the nose which was also reported by
Hsieh.33. Points of streamwise separation and reattachment
predicted by the numerical calculation are denoted by S and R
in Fig. 6. The boundary layer remains attached on the wind-
ward side and numerical results for the windward side are also
shown in Fig. 6.

The thin-layer model is capable of predicting the leeside
crossflow separation which occurs at this high incidence as
well as the preceding predicted streamwise separation.
Crossflow velocity vectors from the numerical calculation are
shown in Fig. 1 at a downstream station of approximately
eight nose radii. Notice the existence of a major recirculation
region on the leeside of the cylinder and also a secondary
separation region which is seen more clearly in Fig. 8. The
calculated crossflow separation lines are shown in Fig. 9 and
are compared with the experimental data taken from oil flow
pictures.33 The calculated primary separation line reproduces
the experimental data in the region between X/R = 4 and
X/R = 8. Past this point, the combined effects of coarse-grid
resolution and the use of the supersonic-outflow boundary

= 40° i.
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Fig. 8 Velocity vectors in crossflow plane, M^ — 1.2, a = 19 deg.
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Fig. 9 Separation angles.
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Fig. 10 Transition calculation on hemisphere cylinder.

condition destroy the accuracy of the calculation. The
computed secondary separation line is also compared with
experimental data in Fig. 9.

Viscous Separated Flow at Moderate Incidence and M^ < 1
Hsieh33 also carried out an experiment on a hemisphere

cylinder at 5 deg angle of attack in a subsonic freestream,
M^ =0.9 and ReD = 425,000. Numerical laminar and fully
turbulent results for this case were presented previously,24 but
were not satisfactory. Leeside streamwise separation was
reported by Hsieh33 and although the laminar numerical
results correctly reproduce this feature, a possibly spurious
unsteady motion of the flow also occurred. In the numerical
turbulence calculation, the results lacked streamwise
separation altogether and closely resembled the inviscid
results.

Hsieh reports in a private communication that the flow is
probably laminar through separation and then transitions to
turbulence. To simulate this flow, a transition-turbulence
model has been implemented in the thin-layer equations.

To simulate transition, the Baldwin-Lomax34 algebraic
turbulence model was modified so that the eddy viscosity
coefficient is set equal to zero until a specified maximum
value of eddy viscosity is reached. Downstream of this point,
the usual turbulent eddy-viscosity coefficient of the Baldwin-
Lomax model is used. For airfoils, Baldwin and Lomax34

suggest a characteristic constant for transition of 14 in at-
tached boundary layers; whereas in separated regions, a value
of 500 is more appropriate.

Numerical results (using fourth-order differencing) ob-
tained with the transition model are shown in Fig. 10 and
compared with data from Hsieh.32 For the windward side, a
small area of streamwise flow separation occurs, as reported
in the experiment, and the results are in good agreement with
the experiment. On the leeward side, separation occurs as in
the experiment and a steady flow is obtained which agrees

quite well with the experimental pressures. Transition (T)
occurs at approximately X/R = 1.5 on the leeside and does not
occur at all on the windward side of the body. Note that the
slight recompression, which occurs after separation in Fig. 10
(also shown in Fig. 6), is due to the rapid growth of the
boundary layer after separation. It should be pointed out that
these results are rather qualitative and no attempt has been
made, at this time, to investigate the finer details of the
flowfield.

VI. Conclusions
A general purpose, implicit, finite-difference computer

program has been developed to solve compressible unsteady
inviscid or thin-layer viscous three-dimensional flow. Applied
to current computers, the numerical procedure is capable of
providing reasonably accurate flow simulation to simple
aerodynamic configurations. Solutions of such airplane-like
components can be interesting in their own right and can be
useful in testing turbulence models as well. In conjunction
with automatic generation of highly warped spherical grids
being developed simultaneously with the flowfield solver,
simulation of flow about complex aerodynamic con-
figurations can progress when more powerful computers
become available.
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